Railway applications — Testing and Simulation for the acceptance of running characteristics of railway vehicles — Running Behaviour and stationary tests

Bahnanwendungen — Versuche und Simulationen für die Zulassung der fahrechtechnischen Eigenschaften von Eisenbahnfahrzeugen — Fahrverhalten und stationäre Versuche

Applications ferroviaires — Essais et simulations en vue de l'homologation des caractéristiques dynamiques des véhicules ferroviaires — Comportement dynamique et essais stationnaires

ICS 45.060.01

Identical (IDT) with EN 14363:2016-03

Supersedes ÖNORM EN 14363:2010-03; ÖNORM EN 15686:2010-10; ÖNORM EN 15687:2010-10

responsible Committee 213
Railway applications
Railway applications - Testing and Simulation for the acceptance of running characteristics of railway vehicles - Running Behaviour and stationary tests
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>European foreword</td>
<td>6</td>
</tr>
<tr>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>1. Scope</td>
<td>9</td>
</tr>
<tr>
<td>2. Normative references</td>
<td>11</td>
</tr>
<tr>
<td>3. Terms and definitions</td>
<td>12</td>
</tr>
<tr>
<td>4. Deviations from requirements</td>
<td>14</td>
</tr>
<tr>
<td>5. Test requirements</td>
<td>15</td>
</tr>
<tr>
<td>5.1. Measuring uncertainty</td>
<td>15</td>
</tr>
<tr>
<td>5.2. Test extent</td>
<td>15</td>
</tr>
<tr>
<td>5.2.1. General</td>
<td>15</td>
</tr>
<tr>
<td>5.2.2. Fault modes</td>
<td>15</td>
</tr>
<tr>
<td>5.3. Test vehicle</td>
<td>16</td>
</tr>
<tr>
<td>5.3.1. Selection and status of the vehicle</td>
<td>16</td>
</tr>
<tr>
<td>5.3.2. Loading conditions</td>
<td>16</td>
</tr>
<tr>
<td>5.4. Assessment of test result</td>
<td>17</td>
</tr>
<tr>
<td>5.5. Documentation of test</td>
<td>18</td>
</tr>
<tr>
<td>6. First stages assessment</td>
<td>19</td>
</tr>
<tr>
<td>6.1. Safety against derailment on twisted track</td>
<td>19</td>
</tr>
<tr>
<td>6.1.1. General</td>
<td>19</td>
</tr>
<tr>
<td>6.1.2. Signal processing</td>
<td>20</td>
</tr>
<tr>
<td>6.1.3. Rail test conditions</td>
<td>20</td>
</tr>
<tr>
<td>6.1.4. Vehicle test conditions</td>
<td>21</td>
</tr>
<tr>
<td>6.1.5. Test methods</td>
<td>23</td>
</tr>
<tr>
<td>6.2. Safety against derailment under longitudinal compressive forces in S-shaped curves</td>
<td>37</td>
</tr>
<tr>
<td>6.3. Evaluation of the torsional coefficient of a vehicle body</td>
<td>37</td>
</tr>
<tr>
<td>6.4. Determination of displacement characteristics</td>
<td>38</td>
</tr>
<tr>
<td>6.5. Loading of the diverging branch of a switch</td>
<td>38</td>
</tr>
<tr>
<td>6.6. Running safety in curved crossings for vehicles with small wheels</td>
<td>38</td>
</tr>
<tr>
<td>7. Second stage – dynamic performance assessment</td>
<td>39</td>
</tr>
<tr>
<td>7.1. General</td>
<td>39</td>
</tr>
<tr>
<td>7.2. Choice of measuring method</td>
<td>40</td>
</tr>
<tr>
<td>7.2.1. General</td>
<td>40</td>
</tr>
<tr>
<td>7.2.2. Base conditions for the use of the simplified measuring method and measurement of axle box forces</td>
<td>41</td>
</tr>
<tr>
<td>7.2.3. Simplifications for separate stability testing</td>
<td>42</td>
</tr>
<tr>
<td>7.3. Performing on-track tests</td>
<td>42</td>
</tr>
<tr>
<td>7.3.1. General</td>
<td>42</td>
</tr>
<tr>
<td>7.3.2. Test zones and track sections</td>
<td>48</td>
</tr>
<tr>
<td>7.3.3. Extent of tests</td>
<td>49</td>
</tr>
<tr>
<td>7.3.4. Test operation</td>
<td>50</td>
</tr>
<tr>
<td>7.4. Measured quantities and measuring points</td>
<td>50</td>
</tr>
<tr>
<td>7.5. Assessment quantities and limit values</td>
<td>52</td>
</tr>
<tr>
<td>7.5.1. General</td>
<td>52</td>
</tr>
<tr>
<td>7.5.2. Running safety</td>
<td>57</td>
</tr>
</tbody>
</table>
7.5.3 Track loading .. 58
7.5.4 Ride characteristics ... 58
7.6 Test evaluation ... 58
7.6.1 Overview .. 58
7.6.2 Recording the measuring signals .. 59
7.6.3 Statistical evaluation in test zones ... 60
7.6.4 Evaluation of test results in transition curves ... 67
7.6.5 Verification of stability ... 67
7.7 Documentation ... 67
7.7.1 General .. 67
7.7.2 Description of the vehicle design and status of the tested vehicle .. 68
7.7.3 Additional information for future extension of acceptance ... 68
7.7.4 Description of the test routes .. 68
7.7.5 Description of data capture .. 68
7.7.6 Description of evaluation ... 68
7.7.7 Test results (including additional information for model validation) .. 69
7.7.8 Deficiencies in reaching the target test conditions ... 70
7.7.9 Infrastructure conditions more severe than the target test conditions .. 70

Annex A (informative) Information on safety against derailment .. 71
A.1 Factors influencing the safety against derailment of vehicles running on twisted track 71
A.2 Evaluation and limit value for safety against derailment ... 72
A.3 Friction conditions during testing on special track .. 73
A.4 Special conditions for vehicles with air springs .. 75
A.5 Test twist conditions for articulated vehicles .. 76
A.6 Test twist conditions for vehicles with more than two suspension levels ... 82
A.7 Calculation of the shim sizes (test method 1) ... 83
A.8 Performing and evaluating a twist test for a two-axle vehicle (test method 2) 84
A.9 Performing and evaluation of a twist test for a vehicle with two bogies with two axles (test method 2) ... 87

Annex B (informative) Computer simulations designed to examine whether the vehicle has an acceptable resistance to flange climbing derailment at low speed ... 95
B.1 General requirement .. 95
B.2 Computer output ... 95
B.3 Track input .. 95
B.4 Body-bogie yaw torque .. 96
B.5 Performance requirement .. 96

Annex C (informative) Tests for determination of the torsional coefficient of a vehicle body .. 98
C.1 Force-deflection measurement directly at the vehicle body .. 98
C.2 Force-deflection measurement at the contact points between wheel and rail after blocking of the suspension(s) between wheelset (bogie frame) and vehicle body ... 99

Annex D (informative) Determination of displacement characteristics for application with EN 15273 ... 100
EN 14363:2016 (E)

D.1 Introduction ... 100
D.2 Determination of displacement characteristics .. 100

Annex E (informative) Assessment of the behaviour of vehicles with small wheels in curved crossings .. 106
E.1 Purpose .. 106
E.2 Area of application ... 106
E.3 Description of the crossing geometry ... 106
E.4 Test conditions .. 109

Annex F (informative) Test specification for assessment of vehicle behaviour in switches and crossings ... 112
F.1 Introduction ... 112
F.2 Definitions .. 112
F.3 Test conditions .. 112
F.4 Assessment of the test results .. 113
F.5 Documentation .. 113

Annex G (normative) Coordinate system for measured quantities ... 116

Annex H (informative) Operational parameters ... 117

Annex I (informative) Position of the different wheelsets during test ... 119

Annex J (informative) Additional track loading assessment quantities ... 120
J.1 General ... 120
J.2 Maximum lateral force ... 120
J.3 Combination of lateral and vertical forces ... 120

Annex K (informative) Evaluation and background of the rail surface damage quantity 122

Annex L (informative) Typical maximum estimated values of ride characteristics 124

Annex M (normative) Track geometric quality – Selection of test tracks ... 125
M.1 Basis of evaluation ... 125
M.2 Assessment quantities for track geometric quality .. 125
M.3 Different measuring systems .. 126
M.4 Target test conditions ... 127
M.5 Reporting .. 128

Annex N (informative) Background of track quality description ... 129

Annex O (normative) Rail profile measurement ... 130
O.1 General ... 130
O.2 Manual measurements .. 130
O.3 Automatic measurements ... 130

Annex P (normative) Requirements for evaluation of equivalent conicity ... 131

Annex Q (informative) Radial steering index ... 132
European foreword

This document (EN 14363:2016) has been prepared by Technical Committee CEN/TC 256 “Railway applications”, the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by September 2016, and conflicting national standards shall be withdrawn at the latest by September 2016.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s).

For relationship with EU Directive(s), see informative Annex ZA, which is an integral part of this document.

It is not necessary to require further assessment of vehicles which have been already assessed under the conditions of previous standards in this field. Test results achieved under the conditions of the previous standards remain valid and can be used for the extension of acceptance of a vehicle or vehicle design according to this standard.

Prior to the first issue of this standard, national procedures were applied for vehicle acceptance, for example in Germany or UK. The underlying principles that were applied in these earlier standards are also incorporated in this standard. The fundamentals have not been changed but the formulation of the requirements has been made consistent. Therefore it is considered that also vehicles that were previously approved utilizing these earlier requirements have an equal status compared to vehicles that are approved according to this standard. This applies to the infrastructure and operating conditions that were considered in the earlier approval. This includes also a use as reference vehicle for extension of acceptance.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.
Introduction

Acceptable running characteristics of a railway vehicle (hereafter called vehicle) are essential for a safe and economic operation of a railway system. They are related to:

— the vehicle,
— the operating conditions,
— the characteristics of the infrastructure (track layout design and track quality) and
— the contact conditions of the wheel/rail interface.

The objective is to quantify the vehicle's performance under known representative conditions of operation and infrastructure.

This standard describes methods to assess the vehicle performance in the following areas:

— safety against derailment on twisted track (see 6.1);
— running safety under longitudinal compressive forces in s-shaped curves (see 6.2);
— evaluation of the torsional coefficient (see 6.3);
— determination of displacement characteristics (see 6.4);
— loading of the diverging branch of a switch (see 6.5);
— running safety in curved crossings (see 6.6);
— running safety, track loading and ride characteristics (see Clause 7).

The vehicle performance is assessed in two stages. Usually in the first stage the basic characteristics and low speed behaviour are investigated before first runs on the line under controlled operating conditions. In the second stage the running behaviour is assessed. The assessment of a vehicle according to the elements listed above can be performed either by physical testing, numerical simulation, calculation or comparison with a known solution (dispensation). Details about the requirements relating to the choice of the appropriate assessment method are given in this document.

The operational envelope (speed and cant deficiency) that the vehicle has been assessed for needs to be documented.

The establishment of this document was based on existing rules, practices and procedures. The following principles were applied:

— the railway system requires comprehensive technical rules in order to ensure an acceptable interaction of vehicle and track;
— the performance of new railway vehicles has to be evaluated and assessed before putting them into service;
— it is of particular importance that the existing level of safety and reliability is not compromised even when changes in design or operating conditions are demanded, e.g. by the introduction of higher speeds, higher vertical wheel forces, modification of the suspension, etc.
— it is possible to demonstrate compliance with the requirements of this standard by comparison of relevant parameters or by simulation if changes are made to the design or to the operating conditions;
— as the combination of all the target test conditions described is not always achievable, the compliance against the missing target test conditions can be demonstrated by other means.

Requirements on running safety under longitudinal compressive forces in S-shaped curves of certain vehicles are given in EN 15839, while EN 16235 specifies a method to get dispensation from on-track...
testing for vehicles equipped with established and standardized running gear, if certain conditions are fulfilled.

The informative Annexes A, B, C, D, E, F; Q, S, T and U contain requirements that have to be fulfilled when the annex is applied.